skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Jiashuai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given a set of points $$P = (P^+ \sqcup P^-) \subset \mathbb{R}^d$$ for some constant $$d$$ and a supply function $$\mu:P\to \mathbb{R}$$ such that $$\mu(p) > 0~\forall p \in P^+$$, $$\mu(p) < 0~\forall p \in P^-$$, and $$\sum_{p\in P}{\mu(p)} = 0$$, the geometric transportation problem asks one to find a transportation map $$\tau: P^+\times P^-\to \mathbb{R}_{\ge 0}$$ such that $$\sum_{q\in P^-}{\tau(p, q)} = \mu(p)~\forall p \in P^+$$, $$\sum_{p\in P^+}{\tau(p, q)} = -\mu(q) \forall q \in P^-$$, and the weighted sum of Euclidean distances for the pairs $$\sum_{(p,q)\in P^+\times P^-}\tau(p, q)\cdot ||q-p||_2$$ is minimized. We present the first deterministic algorithm that computes, in near-linear time, a transportation map whose cost is within a $$(1 + \varepsilon)$$ factor of optimal. More precisely, our algorithm runs in $$O(n\varepsilon^{-(d+2)}\log^5{n}\log{\log{n}})$$ time for any constant $$\varepsilon > 0$$. While a randomized $$n\varepsilon^{-O(d)}\log^{O(d)}{n}$$ time algorithm for this problem was discovered in the last few years, all previously known deterministic $$(1 + \varepsilon)$$-approximation algorithms run in~$$\Omega(n^{3/2})$$ time. A similar situation existed for geometric bipartite matching, the special case of geometric transportation where all supplies are unit, until a deterministic $$n\varepsilon^{-O(d)}\log^{O(d)}{n}$$ time $$(1 + \varepsilon)$$-approximation algorithm was presented at STOC 2022. Surprisingly, our result is not only a generalization of the bipartite matching one to arbitrary instances of geometric transportation, but it also reduces the running time for all previously known $$(1 + \varepsilon)$$-approximation algorithms, randomized or deterministic, even for geometric bipartite matching. In particular, we give the first $$(1 + \varepsilon)$$-approximate deterministic algorithm for geometric bipartite matching and the first $$(1 + \varepsilon)$$-approximate deterministic or randomized algorithm for geometric transportation with no dependence on $$d$$ in the exponent of the running time's polylog. As an additional application of our main ideas, we also give the first randomized near-linear $$O(\varepsilon^{-2} m \log^{O(1)} n)$$ time $$(1 + \varepsilon)$$-approximation algorithm for the uncapacitated minimum cost flow (transshipment) problem in undirected graphs with arbitrary \emph{real} edge costs. 
    more » « less